- ARGAY, GY., SIMON, K. & KÁLMÁN, A. (1974). Acta Cryst. B30, 805-809.
- BUKOWSKA-STRZYŻEWSKA, M. & PNIEWSKA, B. (1979a). Acta Cryst. B35, 633-639.
- BUKOWSKA-STRZYŻEWSKA, M. & PNIEWSKA, B. (1979b). Acta Cryst. B35, 640–643.
- CAREY, F. A., SMITH, P. M., MAHER, R. J. & BRYAN, R. F. (1977). J. Org. Chem. 42(6), 961–967.
- CHAO, G. Y. & McCullough, J. D. (1960). Acta Cryst. 13, 727–732.
- DOBROWOLSKA, W. & BUKOWSKA-STRZYŻEWSKA, M. (1980). Acta Cryst. B 36, 462–464.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, pp. 16-22. New York: Plenum.
- HAHN, W. E. & RYBCZYŃSKI, B. (1971). Soc. Sci. Lodz. Acta Chim. 16, 123–128.
- HAHN, W. E. & RYBCZYŃSKI, B. (1976). Rocz. Chem. 50, 1523–1533.

- International tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JONES, P. G. & KENNARD, O. (1977). Cryst. Struct. Commun. 6, 97-102.
- KALFF, H. T. & ROMERS, C. (1965). Acta Cryst. 18, 164– 168.
- KALFF, H. T. & ROMERS, C. (1966). Acta Cryst. 20, 490-496.
- KOBAYASHI, Y. & IITAKA, Y. (1977). Acta Cryst. B33, 923– 925.
- MCPHAIL, A. T., ONAN, K. D. & KOSKIMIES, J. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1004–1008.
- MARSH, R. E. (1955). Acta Cryst. 8, 91-94.
- MASON, R. (1961). Acta Cryst. 14, 720-724.
- MONTGOMERY, H. (1960). Acta Cryst. 13, 381-384.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1980). B36, 321-326

Conformations et Interactions Moléculaires à l'Etat Solide de la Pivaloyl-D-alanyl-N-isopyropyl-D-prolinamide Monohydratée

PAR A. AUBRY ET J. PROTAS

Laboratoire de Minéralogie et Cristallographie, Equipe de Recherche associée au CNRS n° 162, Université de Nancy I, Case Officielle n° 140, 54037 Nancy CEDEX, France

ET G. BOUSSARD ET M. MARRAUD

Laboratoire de Chimie Physique Macromoléculaire, Equipe de Recherche associée au CNRS n° 23, ENSIC, 1 rue Grandville, 54000 Nancy CEDEX, France

(Reçu le 29 janvier 1979, accepté le 9 octobre 1979)

Abstract

 $C_{16}H_{29}N_3O_3$. H_2O (grown from ethyl acetate), $M_r = 329$, orthorhombic, $P2_12_12_1$, a = 11.976 (1), b = 16.978 (2), c = 18.457 (3) Å, V = 3753 Å³, $D_{calc} = 1.16$ Mg m⁻³, Z = 8. There are two independent molecules in the asymmetric unit. The final reliability index R is 0.058 with 3508 reflexions. Molecular conformations show opened forms which are stabilized by hydrogen bonds.

Introduction

On sait le rôle important que joue la proline dans le repliement des chaînes peptidiques au sein des protéines 0567-7408/80/020321-06\$01.00 (Chou & Fasman, 1977). A partir de cette donnée, nous avons entrepris l'examen conformationnel des séquences dipeptidiques contenant le résidu proline et protégées aux deux extrémités par deux fonctions amides.

Nous avons déjà décrit les modes de repliement adoptés par les séquences L-Pro-L-Ala et L-Pro-D-Ala à l'état solide (Aubry, Protas, Boussard & Marraud, 1977) et en solution dans un solvant organique inerte (Boussard, Marraud & Néel, 1974). Dans une communication précédente, nous avons aussi caractérisé la forme repliée de la séquence D-Ala-L-Pro à l'état solide (Aubry, Protas, Boussard & Marraud, 1979) qui est aussi le conformère majoritaire en solution dans un solvant organique inerte (Boussard, Marraud & Aubry, 1979).

© 1980 International Union of Crystallography

Nous présentons ici la structure cristalline de la pivaloyl-D-alanyl-N-isopropyl-D-prolinamide monohydratée de formule

La numérotation atomique utilisée est rappelée dans la Fig. 1.

Les intensités diffractées ont été mesurées sur un monocristal parallélépipédique dont les côtés n'excèdent pas 0,3 mm. Un diffractomètre automatique CAD-4 Nonius, muni d'un monochromateur au graphite réglé sur la radiation $\bar{K}\alpha$ du cuivre, a été utilisé pour enregistrer 4593 réflexions dans le domaine de Bragg compris entre 1° et 70°; 3508 réflexions indépendantes, satisfaisant au critère statistique $I > 3\sigma(I)$, ont été conservées pour résoudre la structure. Le mode de balayage $\omega - \theta$ a été utilisé. Chaque réflexion a été corrigée des phénomènes de Lorentz et de polarisation. L'absorption a été négligée ($\mu r = 0,17$).

La structure a été déterminée à l'aide du programme MULTAN (Germain, Main & Woolfson, 1970). La position approchée des atomes d'hydrogène a été déterminée soit par calcul, soit sur des sections de densité électronique utilisant les différences $(F_o - F_c)$. Toutes les positions atomiques ont été affinées par une méthode de moindres carrés avec matrice complète des équations normales (Busing, Martin & Levy, 1962).

Fig. 1. Projection de la structure suivant e montrant le réseau des liaisons hydrogène.

L'indice résiduel final obtenu est R = 0.058.* Les atomes, autres que d'hydrogène, ont été affectés d'un tenseur d'agitation thermique anisotrope et les atomes d'hydrogène d'un coefficient d'agitation thermique isotrope égal à celui de l'atome auquel ils sont liés. Le Tableau 1 donne les coordonnées fractionnaires de chaque atome et leurs écarts types ainsi que les facteurs d'agitation thermique isotrope équivalents donnés par la relation $B_{eq} = \frac{4}{3}(\beta_{11}a^2 + \beta_{22}b^2 + \beta_{33}c^2 + 2\beta_{12}ab\cos\gamma + 2\beta_{13}ac\cos\beta + 2\beta_{23}bc\cos\alpha)$.

Discussion

Conformation moléculaire

Nous appelerons molécule A celle composée des atomes C(1) à C(16), O(1) à O(3), N(1) à N(3) et des atomes d'hydrogène correspondants, la molécule Bétant composée des autres atomes à l'exception des deux molécules d'eau W(1) et W(2). Les Tableaux 2, 3 et 4 donnent les distances interatomiques, les angles valentiels et leurs écarts types.

On constate des différences importantes dans les longueurs des liaisons des groupements pivaloyle, prolyle et isopropyle des deux molécules. Ces différences peuvent s'expliquer en considérant les facteurs d'agitation thermique équivalents (Tableau 1) d'une part et les distances interatomiques intermoléculaires les plus courtes (Tableau 4) d'autre part. Globalement la molécule A est la plus agitée ($B_{eq} = 5,65$ Å² pour la molécule A et 4,80 Å² pour la molécule B) ce qui va de pair avec un entourage atomique moins dense que celui de la molécule B (26 distances interatomiques intermoléculaires inférieures à 3,80 Å pour la molécule A et 37 pour la molécule B). Le groupement pivaloyle de la molécule A, très agité thermiquement, présente des distances interatomiques plus courtes que la normale associées à une seule distance intermoléculaire inférieure à 3,80 Å. Pour la molécule B on relève des distances et une agitation thermique normales associées à quatre distances intermoléculaires inférieures à 3,80 Å.

On retrouve le même phénomène au niveau du cycle pyrrolidine de la molécule A dans lequel l'atome C(10) est stériquement libre alors que son homologue C(26) est bloqué par W(2) à une distance de 3,542 (7) Å (Tableau 4).

Par contre, c'est le groupement isopropyle de la molécule B qui est le plus agité thermiquement

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes, les tableaux des plans moyens et des caractéristiques des liaisons hydrogène ont été déposés au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34732: 37 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, Angleterre.

Tableau 1. Coordonnées atomiques fractionnaires $(\times 10^4, pour H \times 10^3)$ et leurs écarts types, et coefficients d'agitation thermique équivalents

	Molécule A				Molécule B				
	x	У	z	$B_{\text{éq}}(\dot{A}^2)$		x	У	Z	$B_{\dot{e}q}(\dot{A}^2)$
C(1)	-594 (6)	7371 (4)	8274 (7)	4.59	C(17)	1901 (4)	6172 (3)	7119 (3)	5.22
$\tilde{C}(2)$	-508 (6)	8468 (7)	9087 (5)	12.26	C(18)	1851 (4)	7369 (3)	6338 (3)	5.24
C(3)	-598 (7)	8706 (7)	7823 (6)	14,36	C(19)	2168 (5)	6043 (3)	5782 (3)	5,17
C(4)	-143(4)	8167 (3)	8381 (3)	3,97	C(20)	2400 (4)	6554 (3)	6448 (3)	3,83
C(5)	1128 (4)	8156 (3)	8329 (3)	3,65	C(21)	3655 (4)	6597 (3)	6532 (3)	3,84
C(6)	2876 (4)	7583 (2)	8701 (3)	4,09	C(22)	5415 (3)	7205 (2)	6199 (3)	3,21
C(7)	3287 (5)	6870 (3)	9132 (4)	6,45	C(23)	5863 (4)	7967 (3)	5847 (3)	4,42
C(8)	3488 (4)	8317 (2)	8996 (3)	3,41	C(24)	5887 (3)	6491 (2)	5781 (2)	3,02
C(9)	4921 (5)	8119 (3)	8014 (3)	5,19	C(25)	7501 (4)	6479 (3)	6644 (3)	4,17
C(10)	5938 (7)	8566 (6)	7872 (4)	11,06	C(26)	8576 (4)	6002 (4)	6607 (3)	5,56
C(11)	6194 (4)	9086 (3)	8460 (3)	4,95	C(27)	8242 (5)	5272 (3)	6181 (3)	5,53
C(12)	5169 (4)	9128 (2)	8943 (2)	3,39	C(28)	7391 (4)	5562 (2)	5621 (3)	3,58
C(13)	5494 (4)	8992 (2)	9723 (2)	3,27	C(29)	7980 (4)	5806 (2)	4937 (3)	3,51
C(14)	5802 (4)	9640 (3)	10906 (3)	4,02	C(30)	8800 (4)	5272 (3)	3795 (3)	4,85
C(15)	4770 (5)	9848 (4)	11340 (3)	5,97	C(31)	9916 (6)	4903 (4)	3955 (5)	7,79
C(16)	6781 (5)	10191 (3)	11045 (3)	5,81	C(32)	8217 (7)	4954 (5)	3162 (4)	8,77
O(1)	1642 (3)	8560 (2)	7900 (2)	4,78	O(4)	4195 (3)	6101 (2)	6865 (2)	6,05
O(2)	3152 (3)	8681 (2)	9527 (2)	3,98	O(5)	5387 (3)	6224 (2)	5255 (2)	3,76
O(3)	5764 (3)	8333 (2)	9948 (2)	4,79	O(6)	8360 (3)	6465 (2)	4835 (2)	4,62
N(1)	1679 (3)	7659 (2)	8780 (2)	3,70	N(4)	4212 (3)	7197 (2)	6196 (2)	3,38
N(2)	4451 (3)	8490 (2)	8666 (2)	3,49	N(5)	6876 (3)	6235 (2)	5992 (2)	3,11
N(3)	5530 (3)	9638 (2)	10136 (2)	3,44	N(6)	8099 (4)	5226 (2)	4445 (2)	4,54
W(1)	1656 (5)	8153 (3)	10631 (3)	9,27	W(2)	2910 (4)	7179 (2)	4308 (2)	7,21
H(C1)	-59 (6)	741 (4)	876 (3)		H(C17)	104 (5)	604 (3)	704 (3)	
H'(C1)	-10 (5)	694 (3)	805 (3)		H'(C17)	225 (5)	575 (3)	722 (3)	
H"(C1)	-139 (5)	737 (3)	804 (3)		H"(C17)	194 (5)	651 (3)	755 (3)	
H(C2)	-139 (5)	847 (3)	914 (3)		H(C18)	100 (5)	729 (3)	640 (3)	
H'(C2)	-21(5)	896 (3)	924 (3)		H'(C18)	208 (5)	757 (3)	590 (3)	
H"(C2)	-25 (5)	805 (3)	953 (3)		H"(C18)	212 (5)	772 (3)	679 (3)	
H(C3)	-143(5)	887(3)	783 (3)		H(C19)	241 (4)	625 (3) 508 (2)	529 (3)	
H'(C3)	-39 (5)	847(3)	731 (3)		H'(C19)	128 (5)	598 (3) 552 (2)	5/2(3)	
$H^{(C3)}$	-12(5)	921(3)	787(3)		$H^{(C19)}$	251 (5)	555 (5) 710 (2)	585 (3) 679 (2)	
H(C0)	302 (3)	730 (3) 600 (3)	014(3)		H(C22)	559 (5)	800 (3)	531 (3)	
$\Pi(C_1)$	412(3)	620 (3)	908 (3)		$H(C_{23})$	559 (5) 671 (5)	803 (3)	501 (3)	
H''(C7)	294 (3)	680(3)	0.60(3)		H''(C23)	558 (5)	830 (3)	571(3)	
	518 (5)	755(3)	909 (3) 811 (3)		H(C25)	770 (5)	710 (3)	663(3)	
H'(C9)	438(5)	811 (3)	756 (3)		H'(C25)	701 (5)	635 (3)	711(3)	
$H(C_{10})$	666 (5)	819 (3)	750 (3)		H(C26)	924 (5)	628 (3)	638 (3)	
H'(C 0)	579 (5)	890 (3)	743 (3)		H'(C26)	891 (5)	589 (3)	715 (3)	
$H(C_{11})$	687 (5)	890 (3)	867 (3)		H(C27)	894 (5)	503 (3)	594 (3)	
H'(C11)	643 (5)	958 (3)	829 (3)		H'(C27)	783 (5)	490 (3)	655 (3)	
$H(C_{12})$	474 (5)	962 (3)	889 (3)		H(C28)	677(5)	519 (3)	549 (3)	
H(C14)	606 (5)	909 (3)	1107 (3)		H(C30)	890 (5)	586 (3)	365 (3)	
H(C15)	495 (5)	985 (3)	1191 (3)		H(C31)	966 (5)	430 (4)	386 (3)	
H'(C15)	453 (5)	1032 (3)	1122 (3)		H'(C31)	1032 (5)	504 (3)	437 (3)	
H"(C15)	406 (5)	945 (3)	1125 (3)		H"(C31)	1050 (5)	508 (3)	349 (3)	
H(C16)	744 (5)	1008 (4)	1074 (3)		H(C32)	777 (5)	444 (3)	327 (3)	
H'(C16)	697 (5)	1022 (3)	1160 (3)		H'(C32)	880 (5)	485 (3)	271 (3)	
H"(C16)	655 (5)	1074 (3)	1096 (3)		H"(C32)	762 (5)	532 (3)	297 (3)	
H(N1)	126 (5)	738 (3)	912 (3)		H(N4)	386 (5)	743 (3)	600 (3)	
H(N3)	513 (5)	993 (3)	999 (3)		H(N6)	786 (5)	480 (3)	464 (3)	
H(W1)	226 (5)	836 (3)	1021 (3)		H(W2)	374 (5)	764 (3)	463 (3)	
H'(W1)	135 (5)	769 (3)	1044 (3)		H'(W2)	450 (5)	683 (3)	467 (3)	

(Tableau 1) et le moins encombré stériquement (Tableau 4).

Le cycle pyrrolidine de la molécule A est de conformation C^{ν} -exo et celui de la molécule B, C^{ν} -endo. Les valeurs des angles de torsion autour des liaisons

des cycles et des angles utilisés conventionnellement (IUPAC-IUB Commission on Biochemical Nomenclature, 1970) pour décrire les conformations des molécules sont rassemblées dans le Tableau 5 (Winkler & Dunitz, 1971).

Tableau 2. Distances interatomiques (Å) et écarts types

Tableau 3. Angles valentiels (°) et écarts types

Molégula 4		Molécule P		Molécule A		Molécule B	
WORCule A		Molecule D		C(1)-C(4)-C(2)	109,3 (7)	C(17)-C(20)-C(18)	108,7 (4)
C(4) - C(1)	1,468 (9)	C(20)–C(17)	1,520 (7)	C(1)-C(4)-C(3)	109,8 (7)	C(17)-C(20)-C(19)	110,0 (4)
C(4)–C(2)	1,465 (11)	C(20)–C(18)	1,545 (7)	C(1)-C(4)-C(5)	110,3 (4)	C(17) - C(20) - C(21)	109,1 (4)
C(4) - C(3)	1,483 (12)	C(20)–C(19)	1,529 (7)	C(2)-C(4)-C(3)	107,1 (6)	C(18) - C(20) - C(19)	108,9 (4)
C(4) - C(5)	1,526 (7)	C(20)-C(21)	1,513 (6)	C(2) - C(4) - C(5)	111,0 (5)	C(18) - C(20) - C(21)	113,1 (4)
C(5) - O(1)	1,215 (6)	C(21)–O(4)	1,227 (6)	C(3) - C(4) - C(5)	109,3(5)	C(19) = C(20) = C(21)	100,9 (4)
C(5) - N(1)	1,357 (6)	C(21) - N(4)	1,366 (6)	C(4) = C(5) = O(1) C(4) = C(5) = N(1)	122,7(4)	C(20) = C(21) = O(4) C(20) = C(21) = N(4)	118 3 (4)
N(1) - C(6)	1,447 (6)	N(4) - C(22)	1,441 (5)	C(4) = C(3) = N(1) O(1) = C(5) = N(1)	120.3 (4)	O(4) - C(21) - N(4)	118 9 (4)
C(6) - C(7)	1,529 (7)	C(22) - C(23)	1,540 (6)	C(5) = N(1) = C(6)	118,3 (4)	C(21) - N(4) - C(22)	119.6 (4)
C(6) - C(8)	1,546 (6)	C(22) - C(24)	1,544 (6)	N(1)-C(6)-C(7)	109.7 (4)	N(4)-C(22)-C(23)	110,8 (4)
C(8) - O(2)	1.227 (6)	C(24) - O(5)	1.227 (5)	N(1) - C(6) - C(8)	111,3 (4)	N(4) - C(22) - C(24)	110,9 (3)
C(8) - N(2)	1.336 (6)	C(24) - N(5)	1.321 (5)	C(7) - C(6) - C(8)	107,6 (4)	C(23)-C(22)-C(24)	108,6 (4)
N(2) - C(9)	1,469 (7)	N(5) - C(25)	1,477 (6)	C(6)-C(8)-O(2)	122,1 (4)	C(22)–C(24)–O(5)	120,4 (4)
N(2) - C(12)	1 474 (6)	N(5) - C(28)	1467(5)	C(6) - C(8) - N(2)	115,2 (4)	C(22)-C(24)-N(5)	116,1 (4)
C(9) - C(10)	1,459 (10)	C(25) - C(26)	1,521(7)	O(2) - C(8) - N(2)	122,6 (4)	O(5)-C(24)-N(5)	123,3 (5)
C(10) - C(11)	1,432 (10)	C(26) - C(27)	1,527 (8)	C(8) - N(2) - C(9)	127,6 (4)	C(24) - N(5) - C(25)	127,1 (4)
C(10) - C(11)	1,432 (10)	C(20) - C(27)	1,522(0) 1,524(9)	C(8)-N(2)-C(12)	120,4 (4)	C(24) - N(5) - C(28)	119,7 (4)
C(11) - C(12) C(12) - C(13)	1,520 (7)	C(27) - C(28) C(28) - C(20)	1,334(6)	C(9) - N(2) - C(12)	112,1 (4)	C(25) - N(5) - C(28)	112,7(3)
C(12) - C(13)	1,309(0)	C(20) - C(29)	1,303(7)	N(2) = C(9) = C(10)	104,2 (5)	N(3) = C(23) = C(20) C(25) = C(26) = C(27)	104,1 (4)
C(13) = O(3)	1,230(3)	C(29) = O(0)	1,222(3)	C(9) = C(10) = C(11)	107,5 (5)	C(25) = C(25) = C(27) C(26) = C(27) = C(28)	105,5 (4)
V(13) - N(3)	1,337 (3)	C(29) = N(0)	1,347(0)	C(11) = C(12) = C(13)	107, 5(3) 110,1(4)	C(27) - C(28) - C(29)	110.0 (4)
N(3) = C(14)	1,438 (0)	N(0) = C(30)	1,400 (7)	C(11) - C(12) - N(2)	103,5 (4)	C(27) - C(28) - N(5)	102,4 (4)
C(14) = C(15)	1,515 (8)	C(30) - C(31)	1,505 (9)	N(2)-C(12)-C(13)	111,7 (3)	N(5)-C(28)-C(29)	112,0 (3)
C(14) - C(16)	1,521 (8)	C(30) - C(32)	1,464 (9)	C(12) - C(13) - O(3)	121,8 (4)	C(28)-C(29)-O(6)	123,7 (4)
C(1) - H(C1)	0,91 (6)	C(17)-H(C17)	1.07 (6)	C(12)-C(13)-N(3)	115,4 (4)	C(28)–C(29)–N(6)	114,5 (4)
C(1) - H'(C1)	1.04 (6)	C(17) - H'(C17)	0.85 (6)	O(3) - C(13) - N(3)	122,8 (4)	O(6) - C(29) - N(6)	121,7 (4)
C(1) - H''(C1)	1.05 (6)	C(17) - H''(C17)	0.99 (6)	C(13) - N(3) - C(14)	124,4 (4)	C(29) - N(6) - C(30)	125,0 (4)
C(2) - H(C2)	1.06 (6)	C(18) - H(C18)	1.03 (6)	N(3)-C(14)-C(15)	109,5 (4)	N(6) - C(30) - C(31)	109,0 (5)
C(2) = H'(C2)	0.95 (6)	C(18) - H'(C18)	0.92 (6)	N(3) = C(14) = C(16)	109,7 (4)	N(0) = C(30) = C(32)	111,1 (5)
C(2) = H''(C2)	1,12 (6)	C(18) = H''(C18)	1.08(6)	C(15) = C(14) = C(16) C(5) = N(1) = N(N1)	113,3(4)	C(31) - C(30) - C(32) C(21) - N(4) - H(N4)	112,2 (0)
C(3) = H(C3)	1,12 (0)	C(10) = H(C10)	1,00 (0)	C(5) = N(1) = N(N1)	170(4)	C(21) = N(4) = H(N4) C(22) = N(4) = H(N4)	128 (5)
C(3) = H'(C3)	1,04 (0)	C(19) = H'(C19)	1,02 (0)	C(13) - N(3) - H(N3)	109 (4)	C(29) - N(6) - H(N6)	108 (4)
C(3) = H''(C3)	1,00 (0)	C(19) = H''(C19)	0.97(6)	C(14) - N(3) - H(N3)	120 (4)	C(30) - N(6) - H(N6)	125 (4)
N(1) - H(N1)	0.03 (6)	N(4) - H(N4)	0,57 (0)	H(W1) - W(1) - H'(1)	W1)105 (4)	$H(W^2) - W(2) - H'(W)$	2)100 (4)
C(6) = H(C6)	1.05 (6)	C(22) = H(C22)	114(5)				
C(0) = H(C0)	1,00 (6)	C(22) = H(C22)	1,14(5)				
C(7) = H(C7)	1,00 (0)	C(23) = H(C23)	1,04 (0)				
C(7) = H''(C7)	1,05 (6)	C(23) = H''(C23)	1,03 (0)	Tableau 4. Dis	tances interate	omiques intermolé	culaires
C(0) = H(C0)	1,03 (0)	$C(25) = \Pi(C25)$	1,02 (0)	inféri	<i>eures à</i> 3.80 Å	et écarts types	
C(0) = H'(C0)	1,05 (0)	C(25) = H(C25)	1,07 (6)				
C(10) = H(C10)	1,00 (0)	$C(25) = \Pi(C25)$	1,07 (0)	C(2) $C(7)$	2 (27 (12)	O(19) $O(64)$	2 4 4 7 (7)
C(10) = H'(C10)	1,14 (0)	C(26) - H(C26)	1,02 (0)	$C(2) \cdots C(7)$	3,037(12)	$C(18) \cdots O(0^{n})$	3,447(7)
C(10) = H(C(11))	1,02(0)	C(20) = H(C20)	1,10(0)	$C(3) \cdots C(27^{n})$	3,701(7)	$C(18) \cdots W(2^n)$	3,190 (0)
$C(11) = \Pi(C11)$	0,95(0)	$C(27) = \Pi(C27)$	1,03(0)	C(7) = C(21)	3,403(7)	$C(19) \cdots C(23^{n})$	3,703(0)
C(11) = H(C11)	0,94 (0)	C(27) = H(C27)	1,04 (0)	$C(1)\cdots C(31^m)$	3,714(6)	$C(23) \cdots O(6^{n})$	3,392(0)
U(12) - H(U12)	0,99 (0)	U(20) - H(U20)	1,01(0)	$C(8) \cdots W(1^n)$	3,743(7)	$C(23)\cdots W(2^m)$	3,009 (7)
N(3) - H(N3)	0,74 (0)	N(0) - H(N0)	0,85 (6)	$C(9) \cdots C(22'')$	3,741 (7)	$C(24)\cdots W(2^n)$	3, 789 (0)
C(14) - H(C14)	1,03 (6)	C(30) - H(C30)	1,04 (6)	$C(11)\cdots O(4^{n})$	3,502 (7)	$C(25)\cdots W(2^m)$	3,330(7)
C(15) - H(C15)	1,09 (6)	C(31) - H(C31)	1,09 (6)	$C(12)\cdots O(4^{n})$	3,744 (6)	$C(26)\cdots W(2^m)$	3,542 (7)
C(15) - H'(C15)	0,87 (6)	C(31) - H'(C31)	0,93 (6)	$C(14) \cdots O(5^{*})$	3,/23 (0)	$O(5) \cdots W(2^n)$	2,909 (5)
C(15) - H''(C15)	1,07 (0)	C(31) - H''(C31)	1,15(6)	$C(15) \cdots C(32^{n})$	3,098 (10)	$O(0) \cdots W(2^{m})$	2,809 (5)
C(16) - H(C16)	0,99 (6)	C(32) - H(C32)	1,04 (6)	$C(15)\cdots O(5^n)$	3,765 (7)	$O(6)\cdots N(4^{n})$	3,134 (5)
C(16) - H'(C16)	1,06 (6)	C(32) - H'(C32)	1,10(6)	$C(15)\cdots N(6^n)$	3,785 (8)	$N(4)\cdots W(2^{v})$	3,505 (6)
C(16)–H"(C16)	0,99 (6)	C(32)–H"(C32)	1,01 (6)	$C(16)\cdots W(2^n)$	3,535 (7)	$N(5)\cdots W(2^{v_1})$	3,672 (6)
W(1) - H(W1)	1,13 (6)	W(2)-H(W2)	1,00 (6)	$O(1)\cdots C(27^{t})$	3,368 (6)		
W(1) - H'(W1)	0,94 (6)	W(2)-H'(W2)	1,14 (6)	$O(1)\cdots C(18^{iv})$	3,531 (7)	Code de symétrie	
				$O(1)\cdots C(32^{vl})$	3,709 (9)	(i) $\frac{1}{2} + x, \frac{3}{2} - y, 2$	— z
				$O(2)\cdots W(1^{iv})$	2,857 (6)	(ii) $1-x, \frac{1}{2}+y, \frac{1}{2}$	z - z

 $O(2) \cdots C(28^{ii})$

O(2)···C(27ⁱⁱ)

 $O(2) \cdots N(6^{ii})$

 $O(3) \cdots W(1^{v})$

 $O(3) \cdots N(1^v)$

 $N(3) \cdots O(5^{ii})$

 $W(1)\cdots N(6^{ii})$

 $W(1) \cdots C(31^{ii})$

 $W(1)\cdots C(32^{ii})$

 $W(1)\cdots C(30^{ii})$

3,270 (5)

3,434 (6)

3,566 (5)

2,941 (6)

3,090 (5)

2,996 (4)

3,533 (6)

3,598 (9)

3,786 (9)

3,789 (7)

(iii) $\frac{3}{2} - x$, 1 - y, $\frac{1}{2} + z$

(v) $\frac{1}{2} + x, \frac{3}{2} - y, 2 - z$ (vi) $-\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$

(vii) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$

(iv) *x*,*y*,*z*

Les six liaisons peptidiques, de conformation trans, ne sont pas rigoureusement planes et les écarts maximums des atomes aux plans moyens sont de 0,21 Å.

Liaisons hydrogène et empilement cristallin

La Fig. 1 représente les associations moléculaires par liaison hydrogène. Chaque molécule échange cinq

Tableau 5. Angles conformationnels (°) et écarts types

	Molécule A	Molécule B			Molécule A	Molécule B
	74,0 (5) -149,6 (4)	64,0 (5) -151,5 (4)			57,3 (5) 141,9 (4)	82,6 (5) -156,3 (4)
χ ₁ χ ₂ χ ₃ χ ₄ θ ₄	N(2)-C(12)-C(11)- C(12)-C(11)-C(10) C(11)-C(10)-C(9)- C(10)-C(9)-N(2)-C C(9)-N(2)-C(12)-C	-C(10) -C(9) - -N(2) C(12) C(11)	10,9 (6) -13,2 (8) 9,7 (8) -2,3 (6) -5,2 (5)	N(5)-C(28)-C(C(28)-C(27)-C C(27)-C(26)-C C(26)-C(25)-N C(25)-N(5)-C	(27)—C(26) C(26)—C(25) C(25)—N(5) V(5)—C(28) (28)—C(27)	-29,5 (5) 35,5 (6) -27,0 (5) 9,1 (5) 12,6 (5)
ω_1 ω_2 ω_3 ω_4 ω_5 ω_6 ω_7 ω_8 ω_9 ω_{10} ω_{11}	$\begin{array}{c} C(4)-C(5)-N(1)-C(0)\\ O(1)-C(5)-N(1)-C(0)\\ C(4)-C(5)-N(1)-H(0)\\ O(1)-C(5)-N(1)-H(0)\\ C(6)-C(8)-N(2)-C(0)\\ O(2)-C(8)-N(2)-C(0)\\ C(6)-C(8)-N(2)-C(0)\\ C(6)-C(8)-N(2)-C(0)\\ C(12)-C(13)-N(3)-O(0)\\ C(12)-C(13)-N(3)-O(0)\\ C(12)-C(13)-N(3)-O(0)\\ C(13)-N(3)-C(13)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-N(3)-O(0)\\ C(13)-N(3)-N(3)-N(3)-O(0)\\$	$ \begin{array}{c} (6) \\ (6) \\ (N1) \\ (N1) \\ (12) \\ (12) \\ (9) \\ (9) \\ (-C(14) \\ C(14) \\ -H(N3) \\ +(N3) \end{array} $	$\begin{array}{c} 174,7 (4) \\ -4,4 (7) \\ -4 (4) \\ 176 (4) \\ 173,9 (4) \\ 1,2 (6) \\ 7,2 (7) \\ 177,6 (4) \\ 178,7 (4) \\ -5,0 (7) \\ 29 (5) \\ 155 (5) \end{array}$	$\begin{array}{c} C(20)-C(21)-N\\ O(4)-C(21)-N\\ C(20)-C(21)-N\\ O(4)-C(21)-N\\ O(4)-C(21)-N\\ C(22)-C(24)-N\\ O(5)-C(24)-N\\ C(22)-C(24)-N\\ C(22)-C(24)-N\\ O(5)-C(24)-N\\ C(28)-C(29)-N\\ O(6)-C(29)-N\\ C(28)-C(29)-N\\ C(29)-N\\ C(29)-N\\$	$ \begin{array}{l} (4) - C(22) \\ (4) - C(22) \\ (4) - H(N4) \\ (4) - H(N4) \\ (5) - C(28) \\ (5) - C(28) \\ (5) - C(25) \\ (5) - C(25) \\ (6) - C(30) \\ (6) - C(30) \\ (6) - H(N6) \\ (6) - H(N6) \\ \end{array} $	$\begin{array}{c} -173,1 (4) \\ 4,2 (7) \\ -2 (5) \\ 175 (5) \\ -179,6 (4) \\ -4,3 (6) \\ 9,5 (6) \\ -175,2 (4) \\ -169,2 (4) \\ 8,5 (7) \\ -5 (4) \\ 172 (4) \end{array}$
$\chi_{2N} = \omega_8 - \omega_8 - \omega_1 - \omega_1 - \omega_1 - \omega_2 - \omega_5 - \omega$	$\begin{array}{c} \text{Mole} \\ \omega_6 + \pi & 1, \\ \omega_2 + \pi & -0, \\ \omega_6 + \pi & 4, \end{array}$	écule A Moléc ,2 (5) 9,1 ,9 (6) 2,7 ,9 (5) 4,7	sule <i>B</i> (5) (5) (5)	$\chi_{3C} = \omega_9 - \omega_{10} + \pi$ $\tau_{2R} = \frac{1}{2}(\omega_5 + \omega_8)$	Moléc 3,7 4,2	1/2 (4) ule A Molécule B (5) $2,3$ (6) (4) $2,6$ (4)
O(1) O(1) O(1) C(13 C(13	-C(5)-C(4)-C(1) -C(5)-C(4)-C(2) -C(5)-C(4)-C(3))-N(3)-C(14)-C(15))-N(3)-C(14)-C(16)	$ \begin{array}{c} 123,1\\ -115,6\\ 2,3\\ -111,0\\ 124,0 \end{array} $	(8) (7) (8) (6) (6)	O(4)-C(21)-C(20)-C O(4)-C(21)-C(20)-C O(4)-C(21)-C(20)-C C(29)-N(6)-C(30)-C C(29)-N(6)-C(30)-C	C(17) C(18) C(19) C(31) C(32) -	32,3 (6) 153,5 (6) -86,6 (6) 95,9 (7) 136,0 (8)

Fig. 2. Vue stéréoscopique de l'enchaînement moléculaire (Johnson, 1965).

liaisons hydrogène avec ses voisines et les atomes d'oxygène des groupements carbonyles des liaisons peptidiques N-terminales ne sont engagés dans aucune interaction par liaison hydrogène. De plus, le groupement amidique de la liaison C-terminale de la molécule B est libre puisque la distance intermoléculaire entre l'atome N(6) et l'atome d'oxygène le plus proche est $N(6) \cdots O(2) = 3,566$ (5) Å. Le groupement carbonyle C(13)-O(3) de la molécule A est accepteur de deux liaisons hydrogène; il en est de même des groupements C(24)-O(5) et C(29)-O(6) de la molécule B. Chaque molécule A est liée à deux molécules homologues par les liaisons hydrogène $N(1)\cdots O(3)$ et par le

pont $O(2) \cdots W(1) \cdots O(3) [\angle O(2) - W(1) - O(3) =$ $103,7(2)^{\circ}$] et à une molécule *B* par la liaison $N(3) \cdots O(5)$. Chaque molécule B est liée à une molécule A par l'interaction $O(5) \cdots N(3)$ et à deux molécules B par la liaison hydrogène $N(4) \cdots O(3)$ et le pont $O(5) \cdots W(2) \cdots O(6) [(O(5) - W(2) - O(6) =$ 104,5 (2)°]. Les molécules d'eau W(1) et W(2)assurent le pontage par liaison hydrogène entre les molécules tripeptidiques et les doublets libres des atomes d'oxygène semblent ne jouer aucun rôle dans la structure. Les caractéristiques géométriques des liaisons hydrogène sont portées sur la Fig. 1. La Fig. 2 est une vue stéréoscopique de l'enchaînement moléculaire.

Références

- AUBRY, A., PROTAS, J., BOUSSARD, G. & MARRAUD, M. (1977). Acta Cryst. B33, 2399-2406.
- AUBRY, A., PROTAS, J., BOUSSARD, G. & MARRAUD, M. (1979). Acta Cryst. B35, 694-699.
- BOUSSARD, G., MARRAUD, M. & AUBRY, A. (1979). Biopolymers, 18, 1297-1331.
- BOUSSARD, G., MARRAUD, M. & NÉEL, J. (1974). J. Chim. Phys. Phys. Chim. Biol. 71, 1081-1091.

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- CHOU, P. Y. & FASMAN, G. D. (1977). J. Mol. Biol. 115, 135-175.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.

Acta Cryst. (1980). B36, 326-331

IUPAC-IUB COMMISSION ON BIOCHEMICAL NOMEN-CLATURE (1970). Biochemistry, 9, 3471-3479.

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- WINKLER, F. K. & DUNITZ, J. D. (1971). J. Mol. Biol. 59, 169–182.

Structures of L-Prolylsarcosine Monohydrate and *tert*-Butoxycarbonyl-L-prolylsarcosine Benzyl Ester

BY T. KOJIMA, T. KIDO, H. ITOH, T. YAMANE AND T. ASHIDA

Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

(Received 23 April 1979; accepted 6 September 1979)

Abstract

The crystal structures of the title compounds have been determined by the X-ray method. The crystal data are: L-prolylsarcosine monohydrate, $P2_12_12_1$, a = 11.003(4), b = 11.916 (3), c = 7.795 (2) Å, Z = 4, R =0.097; tert-butoxycarbonyl-L-prolylsarcosine benzyl ester, $P2_12_12_1$, a = 11.271(2), b = 18.751(1), c =9.372 (1) Å, Z = 4, R = 0.070. The conformations of the main chains of the two peptides agree well with each other. The peptide bonds between the prolyl and sarcosyl residues have cis configurations, and the bond angles around the N(Sar) atom are significantly affected by the configuration of the peptide bond. In the cis form, the angle C'-N-C^{α} is larger and C'-N-C^{Me} is smaller, both by about 6° , than those in the *trans* form. The conformational-energy calculation indicates that the stability of the *cis* peptide bond of the sarcosyl residue is almost equal to that of the trans form, and that the configuration may be determined by intramolecular interactions with other groups in the molecule and intermolecular forces.

Introduction

Sarcosine or *N*-methylglycine, which rarely occurs in proteins, is one of the major components of antibiotics, such as actinomycin or etamycin. The crystal structures of several cyclic peptides containing sarcosine have been reported (Groth, 1969, 1970, 1973*a*,*b*, 1974, 1975; Jain & Sobell, 1972; Declercq, Germain, Van Meerssche, Debaerdemaeker, Dale & Titlestad, 1975). In many of these, the *cis* form of the peptide bond was observed at the main-chain reversal points to form a 0567-7408/80/020326-06\$01.00 ring. Because sarcosine has a substituent at the N atom, it may easily have a *cis* configuration in the cyclic peptide. However, very few structure analyses of such linear peptides have been published; one such structure is tert-butoxycarbonyl(Boc)-Sar-Gly-OBz (Itoh, Yamane, Ashida, Sugihara, Imanishi & Higashimura, 1976). Thus investigation of the conformation of the sarcosyl residue in linear peptides is particularly important in the examination of the conformational role of the sarcosyl residue in peptides. Linear peptides containing sarcosine, L-Pro-Sar, Boc-L-Pro-Sar, Boc-L-Pro-Sar-OBz and tert-amyloxycarbonyl(Aoc)-L-Pro-Sar-OBz, were prepared and crystallographic studies were undertaken. The structure of Boc-L-Pro-Sar has already been reported (Itoh, Yamane & Ashida, 1978). The crystals of Boc-L-Pro-Sar-OBz and Aoc-L-Pro-Sar-OBz are isomorphous with each other.

In this paper the crystal structures of L-Pro-Sar and Boc-L-Pro-Sar-OBz are dealt with and also a brief description of the conformational stability of L-Pro-Sar, Boc-L-Pro-Sar-OBz and Boc-L-Pro-Sar is presented.

Experimental

L-Pro-Sar was recrystallized by slow evaporation of an ethanol-water solution, and Boc-L-Pro-Sar-OBz was recrystallized from an ethanol-ether solution. Crystal data are given in Table 1, together with those of Aoc-L-Pro-Sar-OBz. Intensity data of both peptides were collected on a Hilger & Watts automatic four-circle diffractometer with Ni-filtered Cu K α radiation, the ω - 2θ step-scan method being used. For L-Pro-Sar, 631 © 1980 International Union of Crystallography